Adaptive Type Feedforward Feedback Controller Using Neural Networks
نویسندگان
چکیده
منابع مشابه
Direct Adaptive Control Using Feedforward Neural Networks
This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different ...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Predictive Gaze Stabilization During Periodic Locomotion Using a Feedforward-Feedback Controller based on Adaptive Frequency Oscillators
In this paper we present an approach to the gaze stabilization problem using Adaptive Frequency Oscillators to learn the frequency, phase and amplitude of the optical flow and generate compensatory commands during robot locomotion. Assuming periodic and nearly sine shaped motion of the robot, the system successfully stabilizes the gaze of the robot, whether the robot itself is moving, or an ext...
متن کاملNonlinear Adaptive Flight Control Using Backstepping and Neural Networks Controller
Anonlinearadaptive ight control system is proposed using a backstepping and neural networks controller. The backstepping controller is used to stabilize all state variables simultaneouslywithout the two-timescale assumption that separates the fast dynamics, involvingthe angularrates of the aircraft, from the slow dynamics,which includes angle of attack, sideslip angle, and bank angle. It is a...
متن کاملFeedforward Sequential Memory Neural Networks without Recurrent Feedback
We introduce a new structure for memory neural networks, called feedforward sequential memory networks (FSMN), which can learn long-term dependency without using recurrent feedback. The proposed FSMN is a standard feedforward neural networks equipped with learnable sequential memory blocks in the hidden layers. In this work, we have applied FSMN to several language modeling (LM) tasks. Experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1994
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.30.1234